Strain typing of Borrelia burgdorferi, Borrelia afzelii, and Borrelia garinii by using multiple-locus variable-number tandem repeat analysis.

阅读:4
作者:Farlow Jason, Postic Danielle, Smith Kimothy L, Jay Zack, Baranton Guy, Keim Paul
Human Lyme borreliosis (LB) is the most prevalent arthropod-borne infection in temperate climate zones around the world and is caused by Borrelia spirochetes. We have identified 10 variable-number tandem repeat (VNTR) loci present within the genome of Borrelia burgdorferi and subsequently developed a multiple-locus VNTR analysis (MLVA) typing system for this disease agent. We report here the successful application of MLVA for strain discrimination among a group of 41 globally diverse Borrelia isolates including B. burgdorferi, B. afzelii, and B. garinii. PCR assays displayed diversity at these loci, with total allele numbers ranging from two to nine and Nei's diversity (D) values ranging from 0.10 to 0.87. The average D value was 0.53 across all VNTR loci. A clear correlation exists between the repeat copy number and the D value (r = 0.62) or the number of alleles (r = 0.93) observed across diverse strains. Cluster analysis by the unweighted pair-group method with arithmetic means resolved the 30 observed unique Borrelia genotypes into five distinct groups. B. burgdorferi, B. afzelii, and B. garinii clustered into distinct affiliations, consistent with current 16S rRNA phylogeny studies. Genetic similarity and diversity suggest that B. afzelii and B. garinii are close relatives and were perhaps recently derived from B. burgdorferi. MLVA provides both phylogenetic relationships and additional resolution to discriminate among strains of Borrelia species. This new level of strain identification and discrimination will allow more detailed epidemiological and phylogenetic analysis in future studies.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。