Iridium-Catalyzed Asymmetric Difunctionalization of C-C σ-Bonds Enabled by Ring-Strained Boronate Complexes.

阅读:4
作者:Shen Hong-Cheng, Popescu Mihai V, Wang Ze-Shu, de Lescure Louis, Noble Adam, Paton Robert S, Aggarwal Varinder K
Enantioenriched organoboron intermediates are important building blocks in organic synthesis and drug discovery. Recently, transition metal-catalyzed enantioselective 1,2-metalate rearrangements of alkenylboronates have emerged as an attractive protocol to access these valuable reagents by installing two different carbon fragments across C═C π-bonds. Herein, we report the development of an iridium-catalyzed asymmetric allylation-induced 1,2-metalate rearrangement of bicyclo[1.1.0]butyl (BCB) boronate complexes enabled by strain release, which allows asymmetric difunctionalization of C-C σ-bonds, including dicarbonation and carboboration. This protocol provides a variety of enantioenriched three-dimensional 1,1,3-trisubstituted cyclobutane products bearing a boronic ester that can be readily derivatized. Notably, the reaction gives trans diastereoisomers that result from an anti-addition across the C-C σ-bond, which is in contrast to the syn-additions observed for reactions promoted by Pd(II)-aryl complexes and other electrophiles in our previous works. The diastereoselectivity has been rationalized based on a combination of experimental data and density functional theory calculations, which suggest that the BCB boronate complexes are highly nucleophilic and react via early transition states with low activation barriers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。