Kinematic robot-based evaluation scales and clinical counterparts to measure upper limb motor performance in patients with chronic stroke.

阅读:3
作者:Bosecker Caitlyn, Dipietro Laura, Volpe Bruce, Krebs Hermano Igo
BACKGROUND: Human-administered clinical scales are the accepted standard for quantifying motor performance of stroke subjects. Although they are widely accepted, these measurement tools are limited by interrater and intrarater reliability and are time-consuming to apply. In contrast, robot-based measures are highly repeatable, have high resolution, and could potentially reduce assessment time. Although robotic and other objective metrics have proliferated in the literature, they are not as well established as clinical scales and their relationship to clinical scales is mostly unknown. OBJECTIVE: To test the performance of linear regression models to estimate clinical scores for the upper extremity from systematic robot-based metrics. METHODS: Twenty kinematic and kinetic metrics were derived from movement data recorded with the shoulder-and-elbow InMotion2 robot (Interactive Motion Technologies, Inc), a commercial version of the MIT-Manus. Kinematic metrics were aggregated into macro-metrics and micro-metrics and collected from 111 chronic stroke subjects. Multiple linear regression models were developed to calculate Fugl-Meyer Assessment, Motor Status Score, Motor Power, and Modified Ashworth Scale from these robot-based metrics. RESULTS: Best performance-complexity trade-off was achieved by the Motor Status Score model with 8 kinematic macro-metrics (R = .71 for training; R = .72 for validation). Models including kinematic micro-metrics did not achieve significantly higher performance. Performances of the Modified Ashworth Scale models were consistently low (R = .35-.42 for training; R = .08-.17 for validation). CONCLUSIONS: The authors identified a set of kinetic and kinematic macro-metrics that may be used for fast outcome evaluations. These metrics represent a first step toward the development of unified, automated measures of therapy outcome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。