Quality measures for fully automatic CT histogram-based fat estimation on a corpse sample.

阅读:5
作者:Schenkl Sebastian, Hubig Michael, Muggenthaler Holger, Shanmugam Jayant Subramaniam, Güttler Felix, Heinrich Andreas, Teichgräber Ulf, Mall Gita
In a previous article a new algorithm for fully automatic 'CT histogram based Fat Estimation and quasi-Segmentation' (CFES) was validated on synthetic data, on a special CT phantom, and tested on one corpse. Usage of said data in FE-modelling for temperature-based death time estimation is the investigation's number one long-term goal. The article presents CFES's results on a human corpse sample of size R = 32, evaluating three different performance measures: the τ-value, measuring the ability to differentiate fat from muscle, the anatomical fat-muscle misclassification rate D, and the weighted distance S between the empirical and the theoretical grey-scale value histogram. CFES-performance on the sample was: D = 3.6% for weight exponent α = 1, slightly higher for α ≥ 2 and much higher for α ≤ 0. Investigating τ, S and D on the sample revealed some unexpected results: While large values of τ imply small D-values, rising S implies falling D and there is a positive linear relationship between τ and S. The latter two findings seem to be counter-intuitive. Our Monte Carlo analysis detected a general umbrella type relation between τ and S, which seems to stem from a pivotal problem in fitting Normal mixture distributions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。