In this paper, a novel deep learning-based medical imaging analysis framework is developed, which aims to deal with the insufficient feature learning caused by the imperfect property of imaging data. Named as multi-scale efficient network (MEN), the proposed method integrates different attention mechanisms to realize sufficient extraction of both detailed features and semantic information in a progressive learning manner. In particular, a fused-attention block is designed to extract fine-grained details from the input, where the squeeze-excitation (SE) attention mechanism is applied to make the model focus on potential lesion areas. A multi-scale low information loss (MSLIL)-attention block is proposed to compensate for potential global information loss and enhance the semantic correlations among features, where the efficient channel attention (ECA) mechanism is adopted. The proposed MEN is comprehensively evaluated on two COVID-19 diagnostic tasks, and the results show that as compared with some other advanced deep learning models, the proposed method is competitive in accurate COVID-19 recognition, which yields the best accuracy of 98.68% and 98.85%, respectively, and exhibits satisfactory generalization ability as well.
Progressive attention integration-based multi-scale efficient network for medical imaging analysis with application to COVID-19 diagnosis.
阅读:7
作者:Xie Tingyi, Wang Zidong, Li Han, Wu Peishu, Huang Huixiang, Zhang Hongyi, Alsaadi Fuad E, Zeng Nianyin
| 期刊: | Computers in Biology and Medicine | 影响因子: | 6.300 |
| 时间: | 2023 | 起止号: | 2023 Jun;159:106947 |
| doi: | 10.1016/j.compbiomed.2023.106947 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
