Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters.

阅读:3
作者:Hall Jennifer B, Fushman David
We applied a combination of 15N relaxation and CSA/dipolar cross-correlation measurements at five magnetic fields (9.4, 11.7, 14.1, 16.4, and 18.8 T) to determine the 15N chemical shielding tensors for backbone amides in protein G in solution. The data were analyzed using various model-independent approaches and those based on Lipari-Szabo approximation, all of them yielding similar results. The results indicate a range of site-specific values of the anisotropy (CSA) and orientation of the 15N chemical shielding tensor, similar to those in ubiquitin (Fushman, et al. J. Am. Chem. Soc. 1998, 120, 10947; J. Am. Chem. Soc. 1999, 121, 8577). Assuming a Gaussian distribution of the 15N CSA values, the mean anisotropy is -173.9 to -177.2 ppm (for 1.02 A NH bond length) and the site-to-site CSA variability is +/-17.6 to +/-21.4 ppm, depending on the method used. This CSA variability is significantly larger than derived previously for ribonuclease H (Kroenke, et al. J. Am. Chem. Soc. 1999, 121, 10119) or recently, using "meta-analysis" for ubiquitin (Damberg, et al. J. Am. Chem. Soc. 2005, 127, 1995). Standard interpretation of 15N relaxation studies of backbone dynamics in proteins involves an a priori assumption of a uniform 15N CSA. We show that this assumption leads to a significant discrepancy between the order parameters obtained at different fields. Using the site-specific CSAs obtained from our study removes this discrepancy and allows simultaneous fit of relaxation data at all five fields to Lipari-Szabo spectral densities. These findings emphasize the necessity of taking into account the variability of 15N CSA for accurate analysis of protein dynamics from 15N relaxation measurements.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。