Desalinization of seawater can be achieved by membrane distillation techniques (MD). In MD, the membranes should be resistant to fouling, robust for extended operating time, and preferably provide a superhydrophobic surface. In this work, we report the preparation and characterization of a robust and superhydrophobic polyvinylidene fluoride membrane containing fluoroalkyl-capped CuONPs (CuONPs@CF) in the inner and fluorinated capped silicon oxide nanoparticles (SiO(2)NPs@CF) on its surface. SiO(2)NPs@CF with a mean diameter of 225 ± 20 nm were prepared by the sol method using 1H,1H,2H,2H-perfluorodecyltriethoxysilane as a capping agent. Surface modification of the membrane was carried out by spraying SiO(2)NPs@CF (5% wt.) dispersed in a mixture of dimethyl formamide (DMF) and ethanol (EtOH) at different DMF/EtOH % v/v ratios (0, 5, 10, 20, and 50). While ethanol dispersed the nanoparticles in the spraying solution, DMF dissolved the PVDF on the surface and retained the sprayed nanoparticles. According to SEM micrographs and water contact angle measurements, the best results were achieved by depositing the nanoparticles at 10% v/v of DMF/EtOH. Under these conditions, a SiO(2)NPs covered surface was observed with a water contact angle of 168.5°. The water contact angle was retained after the sonication of the membrane, indicating that the modification was successfully achieved. The membrane with SiO(2)NPs@CF showed a flux of 14.3 kg(m(2)·h)(-1), 3.4 times higher than the unmodified version. The method presented herein avoids the complicated modification procedure offered by chemical step modification and, due to its simplicity, could be scalable to a commercial membrane.
Spraying Fluorinated Silicon Oxide Nanoparticles on CuONPs@CF-PVDF Membrane: A Simple Method to Achieve Superhydrophobic Surfaces and High Flux in Direct Contact Membrane Distillation.
阅读:3
作者:Lenac Zivka, SaldÃas César, Terraza Claudio A, Leiva Angel, Koschikowski Joachim, Winter Daniel, Tundidor-Camba Alain, Martin-Trasanco Rudy
| 期刊: | Polymers | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Nov 27; 14(23):5164 |
| doi: | 10.3390/polym14235164 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
