Tryptophan and tyrosine metabolism has a major effect on human health, and disorders have been associated with the development of several pathologies. Recently, gut microbial metabolism was found to be important for maintaining correct physiology. Here, we describe the development and validation of a UHPLC-ESI-MS/MS method for targeted quantification of 39 metabolites related to tryptophan and tyrosine metabolism, branched chain amino acids and gut-derived metabolites in human plasma and urine. Extraction from plasma was optimised using 96-well plates, shown to be effective in removing phospholipids. Urine was filtered and diluted ten-fold. Metabolites were separated with reverse phase chromatography and detected using triple quadrupole MS. Linear ranges (from ppb to ppm) and correlation coefficients (r(2) > 0.990) were established for both matrices independently and the method was shown to be linear for all tested metabolites. At medium spiked concentration, recovery was over 80% in both matrices, while analytical precision was excellent (CV < 15%). Matrix effects were minimal and retention time stability was excellent. The applicability of the methods was tested on biological samples, and metabolite concentrations were found to be in agreement with available data. The method allows the analysis of up to 96 samples per day and was demonstrated to be stable for up to three weeks from acquisition.
Metabolic Profiling of Human Plasma and Urine, Targeting Tryptophan, Tyrosine and Branched Chain Amino Acid Pathways.
阅读:3
作者:Anesi Andrea, Rubert Josep, Oluwagbemigun Kolade, Orozco-Ruiz Ximena, Nöthlings Ute, Breteler Monique M B, Mattivi Fulvio
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2019 | 起止号: | 2019 Nov 1; 9(11):261 |
| doi: | 10.3390/metabo9110261 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
