OBJECTIVE: Even though elastin and fibrillin-1 are the major structural components of elastic fibers, mutations in elastin and fibrillin-1 lead to narrowing of large arteries in supravalvular aortic stenosis and dilation of the ascending aorta in Marfan syndrome, respectively. A genetic approach was therefore used here to distinguish the differential contributions of elastin and fibrillin-1 to arterial development and compliance. METHODS AND RESULTS: Key parameters of cardiovascular function were compared among adult mice haploinsufficient for elastin (Eln(+/-)), fibrillin-1 (Fbn1(+/-)), or both proteins (dHet). Physiological and morphological comparisons correlate elastin haploinsufficiency with increased blood pressure and vessel length and tortuosity in dHet mice, and fibrillin-1 haploinsufficiency with increased aortic diameter in the same mutant animals. Mechanical tests confirm that elastin and fibrillin-1 impart elastic recoil and tensile strength to the aortic wall, respectively. Additional ex vivo analyses demonstrate additive and overlapping contributions of elastin and fibrillin-1 to the material properties of vascular tissues. Lastly, light and electron microscopy evidence implicates fibrillin-1 in the hypertension-promoted remodeling of the elastin-deficient aorta. CONCLUSIONS: These results demonstrate that elastin and fibrillin-1 have both differential and complementary roles in arterial wall formation and function, and advance our knowledge of the structural determinants of vascular physiology and disease.
Discrete contributions of elastic fiber components to arterial development and mechanical compliance.
阅读:3
作者:Carta Luca, Wagenseil Jessica E, Knutsen Russell H, Mariko Boubacar, Faury Gilles, Davis Elaine C, Starcher Barry, Mecham Robert P, Ramirez Francesco
| 期刊: | Arteriosclerosis Thrombosis and Vascular Biology | 影响因子: | 7.400 |
| 时间: | 2009 | 起止号: | 2009 Dec;29(12):2083-9 |
| doi: | 10.1161/ATVBAHA.109.193227 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
