Integrating deep learning and machine learning for improved CKD-related cortical bone assessment in HRpQCT images: A pilot study.

阅读:4
作者:Lee Youngjun, Bandara Wikum R, Park Sangjun, Lee Miran, Seo Choongboem, Yang Sunwoo, Lim Kenneth J, Moe Sharon M, Warden Stuart J, Surowiec Rachel K
High resolution peripheral quantitative computed tomography (HRpQCT) offers detailed bone geometry and microarchitecture assessment, including cortical porosity, but assessing chronic kidney disease (CKD) bone images remains challenging. This proof-of-concept study merges deep learning and machine learning to 1) improve automatic segmentation, particularly in cases with severe cortical porosity and trabeculated endosteal surfaces, and 2) maximize image information using machine learning feature extraction to classify CKD-related skeletal abnormalities, surpassing conventional DXA and CT measures. We included 30 individuals (20 non-CKD, 10 stage 3 to 5D CKD) who underwent HRpQCT of the distal and diaphyseal radius and tibia and contributed data to develop and validate four different AI models for each anatomical site. Manually annotated cortical bone was used to train each segmentation deep-learning model. Textural features were extracted via Gray-Level Co-occurrence Matrix (GLCM) and classified as CKD or non-CKD using XGBoost with each segmentation model. For comparison, manufacturer-supplied segmentation was used to extract cortical geometry, microarchitecture, and finite element analysis (FEA) outcomes. Model performance was confirmed using the test dataset and a separate independent validation cohort which included HRpQCT imaging from 42 additional individuals (18 non-CKD, 24 CKD stage 5D). For segmentation, the diaphyseal location showed strong performance on test datasets, with Mean IoUs of 0.96 and 0.95, and accuracies of 0.97 for both radius and tibia sites in CKD. Model 4 developed from the diaphyseal tibia region excelled in classifying test and independent validation datasets, achieving F1 scores of 0.99 and 0.96, AUCs of 0.99 and 0.94, sensitivities of 0.99, and specificities of 0.99 and 0.92. No single parameter, including BMD and cortical porosity, among conventional CT outcomes consistently differentiated CKD from non-CKD across all anatomical sites. Integrating HRpQCT with deep and machine learning, this innovative approach enables precise automatic segmentation of severely deteriorated endocortical surfaces and enhances sensitivity to CKD-related cortical bone changes compared to standard DXA and HRpQCT outcomes.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。