The thermodynamics of pressure-induced protein denaturation could so far not be directly compared with protein denaturation induced by temperature or chemical agents. Here, we provide a new cooperative model for pressure-induced protein denaturation that allows the quantitative comparison of all three denaturing processes based on their free energy, enthalpy, entropy, and cooperativity. As model proteins, we use apolipoprotein A-1 and lysozyme. The comparison shows that heat-induced unfolding is the most cooperative process. It is characterized by large positive enthalpies and entropies and (due to enthalpy-entropy compensation) small negative free energies. Pressure denaturation is less cooperative. The entropies and enthalpies are less positive, and the resulting free energies are more negative. Chemically induced unfolding is the least cooperative and shows the most negative free energies, in particular, if guanidinium hydrochloride (exhibiting a high binding affinity to certain proteins) is used as a denaturant. The three unfolding processes differ not only with respect to their cooperativity and the thermodynamic parameters but also with respect to the volume changes, suggesting structural differences of the denatured proteins. Using cooperative models thus yields significant new insights into the protein unfolding/folding processes.
Pressure Protein Denaturation Compared to Thermal and Chemical Unfolding: Analyses with Cooperative Models.
阅读:15
作者:Seelig Joachim, Seelig Anna
| 期刊: | Journal of Physical Chemistry B | 影响因子: | 2.900 |
| 时间: | 2025 | 起止号: | 2025 Jan 30; 129(4):1229-1236 |
| doi: | 10.1021/acs.jpcb.4c07703 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
