Single Molecule Studies Enabled by Model-Based Controller Design.

阅读:5
作者:Bhaban Shreyas, Talukdar Saurav, Li Mingang, Hays Thomas, Seiler Peter, Salapaka Murti
Optical tweezers have enabled important insights into intracellular transport through the investigation of motor proteins, with their ability to manipulate particles at the microscale, affording femto newton force resolution. Its use to realize a constant force clamp has enabled vital insights into the behavior of motor proteins under different load conditions. However, the varying nature of disturbances and the effect of thermal noise pose key challenges to force regulation. Furthermore, often the main aim of many studies is to determine the motion of the motor and the statistics related to the motion, which can be at odds with the force regulation objective. In this article, we propose a mixed objective H (2) /H (∞) optimization framework using a model-based design, that achieves the dual goals of force regulation and real time motion estimation with quantifiable guarantees. Here, we minimize the H (∞) norm for the force regulation and error in step estimation while maintaining the H (2) norm of the noise on step estimate within user specified bounds. We demonstrate the efficacy of the framework through extensive simulations and an experimental implementation using an optical tweezer setup with live samples of the motor protein 'kinesin'; where regulation of forces below 1 piconewton with errors below 10% is obtained while simultaneously providing real time estimates of motor motion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。