In many medical research studies, survival time is typically the primary outcome of interest. The Cox proportional hazards model is the most popular method to investigate the relationship between covariates and possibly right-censored survival time. However, in many clinical trials, the true covariates may not always be accurately measured due to natural biological fluctuation or instrument error. It is well know that for regression analysis in general, naively using mismeasured covariates in conventional inference procedures may incur substantial estimation bias. In the presence of covariate measurement error, several functional modeling methods have been proposed under the situation where the distribution of the measurement error is known. Among them are parametric corrected score and conditional score. Although both methods are consistent, each suffers from severe problem of multiple roots or absence of appropriate root when the measurement error is substantial. The problem persists even when the sample size is practically large. We conduct a detailed investigation on the pathological behaviors of parametric corrected score and propose an approach of incorporating additional estimating functions to remedy these pathological behaviors. The estimation and inference are then accomplished by means of quadratic inference function. Extensive simulation studies are conducted to evaluate the performance of proposed method.
Trend-constrained corrected score for proportional hazards model with covariate measurement error.
阅读:9
作者:Zhu Ming, Huang Yijian
| 期刊: | Contemporary Clinical Trials Communications | 影响因子: | 1.400 |
| 时间: | 2015 | 起止号: | 2015 Oct 23; 1:5-16 |
| doi: | 10.1016/j.conctc.2015.08.001 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
