Protein ubiquitination plays an essential regulatory role within all eukaryotes. Large-scale analyses of ubiquitinated proteins are usually performed by combining affinity purification strategies with mass spectrometry. However, there is no reliable method to systematically differentiate ubiquitinated species from copurified unmodified components. Here we report a simple strategy for the large-scale validation of ubiquitination by reconstructing virtual Western blots for proteins analyzed by gel electrophoresis and mass spectrometry. Because protein ubiquitination, especially polyubiquitination, causes a dramatic shift of molecular weight, the difference between experimental and expected molecular weight was used to confirm the status of ubiquitination. Experimental molecular weight of putative yeast ubiquitin-conjugates was computed from the value and distribution of spectral counts in the gel using a Gaussian curve fitting approach. Unmodified proteins in yeast cell lysate were also analyzed as a control to assess the accuracy of the method. Multiple thresholds that incorporated the mass of ubiquitin and/or experimental variations were evaluated with respect to sensitivity and specificity. Ultimately, only approximately 30% of the candidate ubiquitin-conjugates were accepted based on the stringent filtering criteria, although they were purified under denaturing conditions. These accepted conjugates had an estimated false discovery rate of approximately 8% and primarily consisted of proteins larger than 100 kDa. Compared with another validation method (i.e., identification of ubiquitinated lysine sites), approximately 95% of the proteins with defined modification sites showed a convincing increase in molecular weight on the virtual Western blots. A second independent analysis indicated that the method can be simplified by excising fewer than ten gel bands. Therefore, this strategy establishes criteria necessary for the interpretation of ubiquitinated proteins.
Systematic approach for validating the ubiquitinated proteome.
阅读:3
作者:Seyfried Nicholas T, Xu Ping, Duong Duc M, Cheng Dongmei, Hanfelt John, Peng Junmin
| 期刊: | Analytical Chemistry | 影响因子: | 6.700 |
| 时间: | 2008 | 起止号: | 2008 Jun 1; 80(11):4161-9 |
| doi: | 10.1021/ac702516a | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
