Antibiotics are emerging contaminants that have recently attracted attention. They have been detected in natural water and pose health concerns owing to potential antibiotic resistance. Antibiotics are ubiquitous in aquatic environments, with a wide spectrum and trace levels. It is difficult to detect all types of antibiotics with completely different physicochemical properties. Solid phase extraction (SPE) is a common sample preparation procedure. For a fast and high-throughput continuous on-line analysis of these emerging contaminants, a method for the determination of 42 antibiotics (grouped into seven categories: sulfonamides, fluoroquinolones, lincosamides, macrolides, tetracyclines, cephalosporins, and chloramphenicols) in environmental water was developed based on ultra high performance liquid chromatography combined with tandem mass spectrometry (UHPLC-MS/MS) involving large volume direct injection without sample enrichment and cleanup. The collected water samples were filtered through a 0.22-μm filter membrane, their pH levels were adjusted to 6.0-8.0 after adding Na(2)EDTA, and then the solutions were mixed with an internal standard. The addition of Na(2)EDTA contributed to the release of tetracyclines and fluoroquinolones from the metal chelate. Improved recoveries were observed for all the compounds when the pH of the aqueous solution was set at 6.0-8.0. The optimized UHPLC conditions were as follows: chromatographic column, Phenomenex Kinetex C18 column (50 mmÃ30 mm, 2.6 μm); mobile phase, acetonitrile and 0.1% (v/v) formic acid aqueous solution; flow rate, 0.4 mL/min; injection volume, 100 μL. In the UHPLC-MS/MS experiment, chloramphenicol, thiamphenicol, and florfenicol were analyzed in the negative ionization scheduled multiple reaction monitoring mode (scheduled-MRM), while the other 39 antibiotics were analyzed in the positive scheduled-MRM mode. This acquisition method improved the response of each target compound by dividing the time of the analysis test cycle and scanning the ion channels of chromatographic peaks at different time periods. The ionspray voltage was set at 5500 and -4500 V in positive and negative modes, respectively. The source temperature for both ionization modes was set at 500 â, which was optimized to improve the sensitivity. Instrumental parameters like collision energy and declustering potential were also optimized. Good linearity was observed for all the tested antibiotics, with a correlation coefficient (r) greater than 0.995. The method detection limits (MDLs) were 0.015-3.561 ng/L. The average recoveries ranged from 80.1% to 125%, while the relative standard deviations (RSDs) were between 0.8% and 12.2%. The method was successfully applied to the determination of 10 source water samples and 5 tap water samples. Twelve antibiotics, viz. sulfachloropyridazine, sulfadiazine, sulfamethazine, sulfamethoxazole, sulfisomidine, clindamycin, lincomycin, roxithromycin, clarithromycin, erythromycin, thiamphenicol, and forfenicol, were detected in the 10 water samples with a detection frequency of 100%. The total antibiotic content in each sample ranged from not detected to 80.3 ng/L. Lincosamides and chloramphenicols were the predominant antibiotics in the water samples, with contents in the ranges of 3.83-13.7 and 4.23-33.6 ng/L, respectively. Therefore, the large volume direct injection method exhibited good performance in terms of MDL and recovery compared to standard methods and those reported previously. Compared with traditional pretreatment methods, the large volume direct injection method is simpler, more rapid, more precise, and more accurate. It is a viable alternative to SPE, and can be used for the determination of the 42 antibiotics at trace levels in cleaner water bodies, such as surface water, groundwater, and tap water.
[Determination of 42 antibiotic residues in seven categories in water using large volume direct injection by ultra high performance liquid chromatography-triple quadrupole mass spectrometry].
阅读:3
作者:Sun Huijing, Li Peiwen, Zhang Beibei, Chen Huiming
| 期刊: | Chinese Journal of Chromatography | 影响因子: | 1.000 |
| 时间: | 2022 | 起止号: | 2022 Apr;40(4):333-342 |
| doi: | 10.3724/SP.J.1123.2021.08010 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
