The influence of salts (KCl, NaCl, CaCl(2), and MgCl(2)) on bicelles (bilayered micelles) made of dimyristoylphosphatidylcholine (DMPC, molar fraction X = 78%) and dicaproylphosphatidylcholine (DCPC) was investigated by solid-state (31)P- and (2)H NMR as well as by freeze-fracture electron microscopy. Sizes were determined from (2)H- and (31)P NMR on the basis of a model that incorporated a planar bilayer and a (half-torus) curved rim representing the DMPC and DCPC regions of the bicelle, respectively. Good agreement was shown with sizes determined independently from freeze-fracture electron microscopy images. In the presence of K(+) and Na(+), bicelles have diameters of approximately 300 A while in the presence of Ca(2+) and Mg(2+); their diameter increases to approximately 500 A. Bicelle magnetic alignment is considerably improved by the presence of salts. The optimum salt concentration for such an effect ranges from 50 to 200 mM. Bicelles are magnetically aligned for temperatures roughly ranging from 30 degrees C to 40 degrees C with monovalent cations; this range is slightly extended in the presence of divalent salts. In this temperature range, the dynamics of the long-chain hydrocarbon region of the bicelle (leading to a bicelle thickness of 38 A) and of water is about the same independently of cation nature and concentration. However, at higher temperatures, considerable differences in water dynamics are observed between systems with monovalent and divalent cations. In these conditions, the system consists of a mixture of micelles and extended bilayers, which show residual macroscopic alignment in the magnetic field.
Cation modulation of bicelle size and magnetic alignment as revealed by solid-state NMR and electron microscopy.
阅读:5
作者:Arnold Alexandre, Labrot Thomas, Oda Reiko, Dufourc Erick J
| 期刊: | Biophysical Journal | 影响因子: | 3.100 |
| 时间: | 2002 | 起止号: | 2002 Nov;83(5):2667-80 |
| doi: | 10.1016/S0006-3495(02)75276-4 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
