Both environmental and economic disadvantages of using petroleum-based products have been forcing researchers to work on environmentally friendly, sustainable, and economical alternatives. The purpose of this study is to optimize the solvothermal liquefaction process of grape pomace using response surface methodology coupled with a central composite design. After investigating the physicochemical properties of the liquified products (biopolyol) in detail, a bio-based rigid polyurethane foam (RPUF) was synthesized and characterized. The hydroxyl and acid numbers and viscosity values of all the biopolyols were analyzed. According to variance analysis results (%95 confidence range), both the reaction temperature and catalyst loading were determined as significant parameters on the liquefaction yield (LY). The model was validated experimentally in the following reaction conditions: 4.25% catalyst loading, 50 min reaction time, and 165 °C reaction temperature, which yields an LY of 81.3%. The biopolyols produced by the validation experiment display similar characteristics (hydroxyl number: 470.5 mg KOH/g; acid number: 2.31 mg KOH/g; viscosity: 1785 cP at 25 °C) to those of commercial polyols widely preferred in the production of polyurethane foam. The physicochemical properties of bio-based foam obtained from the biopolyol were determined and the thermal conductivity, closed-cell content, apparent density, and compressive strength values of bio-based RPUF were 31.3 mW/m·K, 71.1%, 33.4 kg/m(3), and 105.3 kPa, respectively.
Liquefaction optimization of grape pulp using response surface methodology for biopolyol production and bio-based polyurethane foam synthesis.
阅读:10
作者:ÃolakoÄlu Furkan, AkdoÄan Emre, Erdem Murat
| 期刊: | Turkish Journal of Chemistry | 影响因子: | 1.400 |
| 时间: | 2024 | 起止号: | 2024 Mar 18; 48(4):568-581 |
| doi: | 10.55730/1300-0527.3680 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
