One of the purposes of tissue engineering is to offer therapeutic alternatives to treat various esophagus-related diseases. To develop viable esophageal replacements that are both mechanically and biologically compatible and to assess the impact of pharmacological treatments on esophageal tissue at the macro- and micro-structural levels, it is crucial to understand the biomechanical properties of the esophagus. In this study, we analyzed esophageal tissue samples from nine newborn lambs. Subjects were randomly separated into a control group (n = 5) and a melatonin-treated group (n = 4). The passive mechanical response of the esophagus was studied by performing in-vitro uniaxial tensile tests along longitudinal and circumferential directions. Samples were classified into three types: internal tissue (mucosa and submucosa layers), external tissue (external muscular layer), and integrated tissue (comprising all layers). Uniaxial stress versus stretch curves of each classification were used to determine mechanical properties that were statistically analyzed. Moreover, average experimental results were used to calibrate an anisotropic hyperelastic model. Stress-stretch curves from uniaxial tests showed a highly anisotropic behavior, with a higher stiffness along the longitudinal direction and internal tissue exhibiting the highest stiffness. To contrast the results obtained from mechanical testing, histological analysis of esophagus samples was carried out. Microstructural components were quantified and morphological measurements of the main zones were performed. No significant differences were found at the macro- and microstructural levels of the tissue, indicating that the supply of low doses of melatonin does not alter the biomechanical properties of the esophagus.
Effect of melatonin on passive, ex-vivo biomechanical behavior of lamb esophagus.
阅读:3
作者:Brito Enzo, Rivera Eugenio, Bezmalinovic Alejandro, GarcÃa-Herrera Claudio, Godoy-Guzmán Carlos, Celentano Diego J, Gonzalez-Candia Alejandro, Herrera Emilio A
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Apr 3; 15(1):11458 |
| doi: | 10.1038/s41598-025-96288-w | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
