Finite-element modelling has been used to simulate local strains and stresses within free-standing polycrystalline slabs of W, Cu and W-Cu, heated with free or constrained boundaries. The elastic strain values in crystallites that satisfied the diffraction condition were used to simulate the lattice strain data that would be obtained from diffraction analysis, from which the average stresses within diffracting domains were computed. Comparison of direct-space stresses in the model with the average stresses determined from diffraction analysis shows that the representative volume elements (RVEs) required to obtain equivalent stress/strain values depend on the deformation mode suffered by the material. Further, the direct-space and diffraction stress values agree only under strict sampling and strain/stress uniformity conditions. Consequently, in samples where measurements are conducted in volumes smaller than the RVE, or where the uniformity conditions are not satisfied, further experimental and numerical techniques might be needed for the accurate determination of applied or residual stress distributions.
Representative volume elements of strain/stress fields measured by diffraction techniques.
阅读:3
作者:Åeren Mehmet Hazar, Pagan Darren C, Noyan Ismail Cevdet
| 期刊: | Journal of Applied Crystallography | 影响因子: | 2.800 |
| 时间: | 2023 | 起止号: | 2023 Jul 20; 56(Pt 4):1144-1167 |
| doi: | 10.1107/S1600576723004351 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
