Ovary-derived Decellularized Extracellular Matrix-based Bioink for Fabricating 3D Primary Ovarian Cells-laden Structures for Mouse Ovarian Failure Correction

基于卵巢衍生的脱细胞细胞外基质的生物墨水,用于制造 3D 原代卵巢细胞负载结构,用于小鼠卵巢衰竭矫正

阅读:5
作者:Jiahua Zheng, Yibin Liu, Chenxiao Hou, Zhongkang Li, Shaopeng Yang, Xiao Liang, Liang Zhou, Jiangbo Guo, Jingkun Zhang, Xianghua Huang

Abstract

Fertility preservation is becoming a clinical duty in practice. Three-dimensional (3D) bioprinting technology is potentially realize ovarian morphological repair and reproductive endocrine function rebuild. There is no published work on 3D bioprinting ovary using a decellularized extracellular matrix (dECM)-based bioink, though dECM is the preferred matrix choice for an artificial ovary. The study aimed to explore swine ovarian dECM-based bioink to fabricate 3D primary ovarian cells (POCs)-laden structures for mouse ovarian failure correction. In this study, the ovarian dECM was converted to dECM-based bioink by dECM solution mixed with a seaweed gelatin blend solution of bioink that was characterized using scanning electron microscopy, circular dichroism, rheology, hematoxylin and eosin staining, and immunohistochemistry. The 3D scaffolds were, then, printed with or without POCs by the extrusion 3D bioprinter. The laden POCs viability was detected with the live/dead assay kit. A female castrated mouse model was established, and the mice were treated with five different methods. The results revealed that the 3D scaffold encapsulating POCs group had more positive signals in neoangiogenesis, cell proliferation and survival than the 3D scaffold group, and ensured sex hormone secretion. Meanwhile, the expression of germ cells in the 3D scaffold encapsulating POCs group was more intensely than the non-printed hydrogel encapsulating POCs group. The work shows that the 3D bioprinting ovary employing ovarian dECM-based bioink is a promising approach for ovarian failure correction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。