OBJECTIVES: This study aimed to isolate and culture SADS cells, investigate their neurogenic capacity and evaluate their application for nerve tissue engineering. MATERIALS AND METHODS: In this experimental study, SADS cells were isolated from human adipose tissue. After 7-day treatment of SADS cells with insulin, indomethacin and isobutylmethylxanthine, neurogenic differentiation of SADS cells was investigated. During this study, Poly (ε-caprolactone) (PCL) and PCL/gelatin nanofibrous scaffolds were fabricated using electrospinning and subsequently nanofibrous scaffolds were coated with platelet-rich plasma (PRP). SADS cells were also seeded on nanofibrous scaffolds and neurogentic differentiation of these cells on nanofibers was also evaluated. Effect of PRP on proliferation and differentiation of SADS cells on scaffolds was also studied. RESULTS: Our results showed that after 7-day treatment of SADS cells with insulin, indomethacin and isobutylmethylxanthine, SADS cells expressed markers characteristic of neural cells such as nestin and neuron specific nuclear protein (NEUN) (as early neuronal markers) as well as microtubule-associated protein 2 (MAP2) and neuronal microtubule-associated (TAU) (as mature neuronal markers) while mature astrocyte maker (GFAP) was not expressed. MTT assay and SEM results showed that incorporation of gelatin and PRP into the structure of nanofibrous scaffolds has a significant positive influence on the bioactivity of scaffolds. Our results also showed neurogentic differentiation of SADS cells on scaffolds. CONCLUSIONS: Our results demonstrated that SADS cells have potential to differentiate into early and mature progenitor neurons, in vitro. PCL/gelatin/PRP was found to be a promising substrate for proliferation of SADS cells and differentiation of these cells into neural cells which make these scaffolds a candidate for further in vivo experiments and suggest their application for nerve tissue engineering.
Differentiation of Human Scalp Adipose-Derived Mesenchymal Stem Cells into Mature Neural Cells on Electrospun Nanofibrous Scaffolds for Nerve Tissue Engineering Applications.
阅读:4
作者:Fesharaki Mehrafarin, Razavi Shahnaz, Ghasemi-Mobarakeh Laleh, Behjati Mohaddeseh, Yarahmadian Reyhaneh, Kazemi Mohammad, Hejazi Hossein
| 期刊: | Cell Journal | 影响因子: | 1.700 |
| 时间: | 2018 | 起止号: | 2018 Jul;20(2):168-176 |
| doi: | 10.22074/cellj.2018.4898 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
