The effect of selected Non-Saccharomyces yeasts and cold-contact fermentation on the production of low-alcohol marula fruit beer.

阅读:4
作者:Hlangwani Edwin, du Plessis Heinrich W, Dlamini Bhekisisa C
The last decade has seen increased consumer demand for zero and low-alcohol beverages. Cold-contact fermentation (CCF) in combination with non-Saccharomyces can be an effective method for producing low-alcohol fruit beverages with desirable qualities. Thus, the aim of this study was to develop a CCF process to produce low-alcohol marula fruit beer using selected non-Saccharomyces yeasts. The effect of temperature (°C), and time (h) on alcohol (% v/v), pH, total titratable acidity (LAE/mL) and specific gravity (SG) was evaluated using response surface methodology. Sterile marula fruit juice was inoculated with Metschnikowia pulcherrima, Pichia fermentans, or Pichia kluyveri respectively. Higher final SG values were observed for temperatures between 8 °C and 15 °C. Above 15 °C, the SG decreased with an increase in temperature and time. Fermentation at temperatures below 10 °C produced zero to low-alcohol marula fruit beer (0.00-0.20 % v/v) with an attenuation rate above 80 %. This was confirmed by the significance of quadratic models for SG (p ≤ 0.01), and alcohol (p = 0.00) for the three selected yeasts. Overall, P. kluyveri produced the lowest alcohol levels, followed by M. pulcherrima and P. fermentans, respectively. The study confirmed that cold-contact fermentation with non-Saccharomyces yeasts can be an effective biological method to produce low-alcohol marula fruit beer in line with the emerging consumer demand for low-alcohol beverages.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。