A Parallel DNA Algorithm for Solving the Quota Traveling Salesman Problem Based on Biocomputing Model.

阅读:2
作者:Wang Zhaocai, Wu Xian, Wu Tunhua
The quota traveling salesman problem (QTSP) is a variant of the traveling salesman problem (TSP), which is a classical optimization problem. In the QTSP, the salesman visits some of the n cities to meet a given sales quota Q while having minimized travel costs. In this paper, we develop a DNA algorithm based on Adleman-Lipton model to solve the quota traveling salesman problem. Its time complexity is O(n (2)+Q), which is a significant improvement over previous algorithms with exponential complexity. A coding scheme of element information is pointed out, and a reasonable biological algorithm is raised by using limited conditions, whose feasibility is verified by simulation experiments. The innovation of this study is to propose a polynomial time complexity algorithm to solve the QTSP. This advantage will become more obvious as the problem scale increases compared with the algorithm of exponential computational complexity. The proposed DNA algorithm also has the significant advantages of having a large storage capacity and consuming less energy during the operation. With the maturity of DNA manipulation technology, DNA computing, as one of the parallel biological computing methods, has the potential to solve more complex NP-hard problems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。