Carisoprodol-mediated modulation of GABAA receptors: in vitro and in vivo studies.

阅读:3
作者:Gonzalez Lorie A, Gatch Michael B, Taylor Cynthia M, Bell-Horner Cathy L, Forster Michael J, Dillon Glenn H
Carisoprodol is a frequently prescribed muscle relaxant. In recent years, this drug has been increasingly abused. The effects of carisoprodol have been attributed to its metabolite, meprobamate, a controlled substance that produces sedation via GABA(A) receptors (GABA(A)Rs). Given the structural similarities between carisoprodol and meprobamate, we used electrophysiological and behavioral approaches to investigate whether carisoprodol directly affects GABA(A)R function. In whole-cell patch-clamp studies, carisoprodol allosterically modulated and directly activated human alpha1beta2gamma2 GABA(A)R function in a barbiturate-like manner. At millimolar concentrations, inhibitory effects were apparent. Similar allosteric effects were not observed for homomeric rho1 GABA or glycine alpha1 receptors. In the absence of GABA, carisoprodol produced picrotoxin-sensitive, inward currents that were significantly larger than those produced by meprobamate, suggesting carisoprodol may directly produce GABAergic effects in vivo. When administered to mice via intraperitoneal or oral routes, carisoprodol elicited locomotor depression within 8 to 12 min after injection. Intraperitoneal administration of meprobamate depressed locomotor activity in the same time frame. In drug discrimination studies with carisoprodol-trained rats, the GABAergic ligands pentobarbital, chlordiazepoxide, and meprobamate each substituted for carisoprodol in a dose-dependent manner. In accordance with findings in vitro, the discriminative stimulus effects of carisoprodol were antagonized by a barbiturate antagonist, bemegride, but not by the benzodiazepine site antagonist, flumazenil. The results of our studies in vivo and in vitro collectively suggest the barbiturate-like effects of carisoprodol may not be due solely to its metabolite, meprobamate. Furthermore, the functional traits we have identified probably contribute to the abuse potential of carisoprodol.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。