Epigenetic regulation of myofibroblast differentiation by DNA methylation.

阅读:3
作者:Hu Biao, Gharaee-Kermani Mehrnaz, Wu Zhe, Phan Sem H
DNA methylation, a key mechanism of repressing gene expression, is of particular relevance in controlling development and cell differentiation. We analyzed the extent and regulation of DNA methylation of the alpha-smooth muscle actin (alpha-SMA) gene to elucidate its potential role in myofibroblast differentiation. These experiments revealed the presence of three CpG islands that were methylated at different levels in fibroblasts, myofibroblasts, and alveolar epithelial type II cells. Coordinately, these cells expressed low, high, or no alpha-SMA, respectively. In addition, inhibition of DNA methyltransferase activity or knock down of DNA methyltransferase using specific small interfering RNA caused significant induction of alpha-SMA in fibroblasts. In contrast, induced overexpression of DNA methyltransferase suppressed alpha-SMA gene expression. Transforming growth factor beta induced myofibroblast differentiation was enhanced or suppressed by knockdown or overexpression of DNA methyltransferase, respectively. Finally, in vitro DNA methylation of the alpha-SMA promoter suppressed its activity. These findings suggest that DNA methylation mediated by DNA methyltransferase is an important mechanism regulating the alpha-SMA gene expression during myofibroblast differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。