Heating and Strain Sensing Elements Based on Segregated Polyethylene/Carbon Black Composites in Polymer Welded Joints.

阅读:3
作者:Buinova Yevheniia, Kobyliukh Anastasiia, Mamunya Yevgen, Maruzhenko Oleksii, Korab Mykola, Trzebicka Barbara, Szeluga Urszula, Godzierz Marcin
The development of easy and direct real-time monitoring of welded joint quality instead of surface damage analysis is crucial to improve the quality of industrial products. This work presents the results of high-density polyethylene (HDPE)-based composites with various carbon black (CB) content (from 20 to 30 vol.%) for use as a heating element and strain sensor in electrofusion-welded polymer joints. The pyroresistive heating process was used to determine the effect of generated Joule heat during welding on the structure and sensor properties of polymer-carbon composites. It is shown that the generation of Joule heat depends on the nanocarbon content and affects the crystallinity of the polymer matrix. The partial disruption of the conductive path of carbon black particles was observed and, as a result, a decrease in electrical conductivity for composites with lower CB content after welding was found. For the highest CB amount, conductivity increased, which is caused by smaller particle-to-particle distance for filler paths. Therefore, the best balance between pyroresistive and sensor properties was found.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。