Acetate is widely used as a dialysate buffer to avoid the precipitation of bicarbonate salts. However, even at low concentrations that wouldn't surpass the metabolic capacity of the Krebs tricarboxylic acid (TCA) cycle, other metabolic routes are activated, leading to undesirable clinical consequences by poorly understood mechanisms. This study aims to add information that could biologically explain the clinical improvements found in patients using citrate dialysate. A unicentric, cross-over, prospective targeted metabolomics study was designed to analyze the differences between two dialysates, one containing 4 mmol/L of acetate (AD) and the other 1 mmol/L of citrate (CD). Fifteen metabolites were studied to investigate changes induced in the TCA cycle, glycolysis, anaerobic metabolism, ketone bodies, and triglyceride and aminoacidic metabolism. Twenty-one patients completed the study. Citrate increased during the dialysis sessions when CD was used, without surpassing normal values. Other differences found in the next TCA cycle steps showed an increased substrate accumulation when using AD. While lactate decreased, pyruvate remained stable, and ketogenesis was boosted during dialysis. Acetylcarnitine and myo-inositol were reduced during dialysis, while glycerol remained constant. Lastly, glutamate and glutarate decreased due to the inhibition of amino acidic degradation. This study raises new hypotheses that need further investigation to understand better the biochemical processes that dialysis and the different dialysate buffers induce in the patient's metabolism.
Impact of Acetate versus Citrate Dialysates on Intermediary Metabolism-A Targeted Metabolomics Approach.
阅读:5
作者:Broseta José Jesús, Roca Marta, RodrÃguez-Espinosa Diana, López-Romero Luis Carlos, Gómez-Bori Aina, Cuadrado-Payán Elena, Devesa-Such Ramón, Soldevila Amparo, Bea-Granell Sergio, Sánchez-Pérez Pilar, Hernández-Jaras Julio
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2022 | 起止号: | 2022 Oct 2; 23(19):11693 |
| doi: | 10.3390/ijms231911693 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
