Layer 6 corticothalamic neurons induce high gamma oscillations through cortico-cortical and cortico-thalamo-cortical pathways.

阅读:4
作者:Russo S, Dimwamwa E D, Stanley G B
Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons. Leveraging the vibrissal pathway in awake, head-fixed mice, we presented ramp-and-hold light at different intensities while recording neural activity in the primary somatosensory barrel cortex (S1) and the ventral posteromedial nucleus (VPm) of the thalamus using silicon probes. We found that the activation of S1 L6CT neurons induces high-frequency LFP oscillations in S1 that are modulated in frequency, but not in amplitude, across light intensities and over time. To identify which neuronal classes contribute to these oscillations, we examined the temporal evolution of firing rate in S1 and VPm. While most S1 neurons were steadily suppressed, VPm and S1 Layer 4 fast spiking (L4 FS) neurons evolved from being suppressed to facilitated within 5OO ms, suggesting differential recruitment of the intracortical vs cortico-thalamo-cortical pathways. Finally, we found that LFP frequency selectively correlates with VPm firing rate. Taken together, our data suggest that L6CT neurons sculpt the frequency of S1 LFP high gamma oscillations through cortico-thalamo-cortical circuits, linking the recurrent interactions mediated by L6CT neurons to the high gamma oscillations observed across physiological and pathological conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。