Sequential activation of NKT cells and NK cells provides effective innate immunotherapy of cancer.

阅读:4
作者:Smyth Mark J, Wallace Morgan E, Nutt Stephen L, Yagita Hideo, Godfrey Dale I, Hayakawa Yoshihiro
The CD1d reactive glycolipid, alpha-galactosylceramide (alpha-GalCer), potently activates T cell receptor-alpha type I invariant NKT cells that secondarily stimulate the proliferation and activation of other leukocytes, including NK cells. Here we report a rational approach to improving the antitumor activity of alpha-GalCer by using delayed interleukin (IL)-21 treatment to mature the alpha-GalCer-expanded pool of NK cells into highly cytotoxic effector cells. In a series of experimental and spontaneous metastases models in mice, we demonstrate far superior antitumor activity of the alpha-GalCer/IL-21 combination above either agent alone. Superior antitumor activity was critically dependent upon the increased perforin-mediated cytolytic activity of NK cells. Transfer of alpha-GalCer-pulsed dendritic cells (DCs) followed by systemic IL-21 caused an even more significant reduction in established (day 8) metastatic burden and prolonged survival. In addition, this combination prevented chemical carcinogenesis more effectively. Combinations of IL-21 with other NK cell-activating cytokines, such as IL-2 and IL-12, were much less effective in the same experimental metastases models, and these cytokines did not substitute effectively for IL-21 in combination with alpha-GalCer. Overall, the data suggest that NK cell antitumor function can be enhanced greatly by strategies that are designed to expand and differentiate NK cells via DC activation of NKT cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。