Poly(glycerol sebacate) nanoparticles for ocular delivery of sunitinib: physicochemical, cytotoxic and allergic studies.

阅读:4
作者:Chegini Sana Pirmardvand, Varshosaz Jaleh, Sadeghi Hamid Mirmohammad, Dehghani Alireza, Minayian Mohsen
Poly(glycerol sebacate) (PGS) is a new biodegradable polymer with good biocompatibility used in many fields of biomedicine and drug delivery. Sunitinib-loaded PGS/gelatine nanoparticles were prepared by the de-solvation method for retinal delivery and treatment of diabetic retinopathy. The nanoparticles were characterised by Fourier-transform infrared and differential scanning calorimetry. The effects of different formulation variables including drug-to-carrier ratio, gelatine-to-PGS ratio, and glycerine-to-sebacate ratio were assessed on the encapsulation efficiency (EE%), particle size, release efficiency (RE), and zeta potential of the nanoparticles. The in vitro cytotoxicity of PGS/gelatine nanoparticles was studied on L929 cells. Draize test on rabbit eyes was also done to investigate the possible allergic reactions caused by the polymer. Glycerine/sebacic acid was the most effective parameter on the EE and RE. Gelatine-to-PGS ratio had the most considerable effect on the particle size while the RE was more affected by the glycerine/sebacic acid ratio. The optimised formulation (S(1)G(0.7)D(21.2)) exhibited a particle size of 282†nm, 34.6% EE, zeta potential of -8.9†mV, and RE% of about 27.3% for drug over 228†h. The 3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide assay indicated PGS/gelatine nanoparticles were not cytotoxic and sunitinib-loaded nanoparticles were not toxic at concentrations <36†nM.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。