The genetic basis of replicated bullseye pattern reduction across the Hibiscus trionum complex.

阅读:9
作者:Yeo May T S, Fairnie Alice L M, Travaglia Valentina, Walker Joseph F, Riglet Lucie, Zeyrek Selin, Moyroud Edwige
Colorful petal patterns fulfill important functions and constitute excellent systems to illuminate the evolutionary processes that generate morphological diversity or instead support the repetitive emergence of similar forms. Here, we combined phylogenomic approaches, genetic manipulations, molecular techniques, and bee behavioral experiments to (i) solve the species relationships across the Trionum complex, a small Hibiscus clade that displays bullseye petal patterns varying in size, hue, and composition, (ii) identify key genes involved in the production of bullseye pigmentation, and (iii) reveal molecular events underpinning pattern variation during the evolution of the group. We found that epidermal cell shape, texture, and pigmentation are genetically distinct and that pigmentation is the most labile feature across the group. We demonstrate that repetitive bullseye reduction events primarily occur through independent modifications of a single genetic locus encoding BERRY1, an R2R3 MYB (myeloblastosis) that regulates anthocyanin pigment production in petals. We also found that buff-tailed bumblebees discriminate against flowers with smaller bullseye sizes, suggesting that changing bullseye proportions impact plant-pollinator interactions. Our results demonstrate how repeated mutations in a single locus led to morphological variation in petal patterning, a trait shown to impact plant fitness in other species and contribute to angiosperm reproductive isolation and speciation.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。