OBJECTIVE: There is currently no accepted method of mapping bilateral cochlear-implant (BiCI) users to maximize binaural performance, but the current approach of mapping one ear at a time could produce spatial perceptions that are not consistent with a sound's physical location in space. The goal of this study was to investigate the perceived intracranial lateralization of bilaterally synchronized electrical stimulation with a range of interaural level differences (ILDs) and to determine a method to produce relatively more centered auditory images when provided multielectrode stimulation. DESIGN: Using direct stimulation, lateralization curves were measured in nine BiCI listeners using 1000-pulses per second (pps), 500-msec constant-amplitude pulse trains with ILDs that ranged from -20 to +20 clinical current units (CUs). The stimuli were presented bilaterally at 70 to 80% of the dynamic range on single or multiple electrode pairs. For the multielectrode pairs, the ILD was applied consistently across all the pairs. The lateralization response range and the bias magnitude at 0 CU ILD (i.e., the number of CUs needed to produce a centered auditory image) were computed. Then the levels that elicit a centered auditory image with single-electrode stimulation were used with multielectrode stimulation to determine if this produced fewer significant biases at 0 CU ILD. Lastly, a multichannel ILD processing model was used to predict lateralization for the multielectrode stimulation from the single-electrode stimulation. RESULTS: BiCI listeners often perceived both single- and multielectrode stimulation at 0-CU ILD as not intracranially centered. For single-electrode stimulation, 44% of the lateralization curves had relatively large (â¥5 CU) bias magnitudes. For the multielectrode stimulation, 25% of the lateralization curves had large bias magnitudes. After centering the single-electrode pairs, the percentage of multielectrode combinations that produced large biases significantly decreased to only 4% (p < 0.001, McNemar's test). The lateralization with multielectrode stimulation was well predicted by a model that used unweighted or weighted average single-electrode lateralization percepts across electrode pairs (87 or 90%, respectively). CONCLUSION: Current BiCI mapping procedures can produce an inconsistent association between a physical ILD and the perceived location across electrodes for both single- and multielectrode stimulation. Explicit centering of single-electrode pairs using the perceived centered intracranial location almost entirely corrects this problem and such an approach is supported by our understanding and model of across-frequency ILD processing. Such adjustments might be achieved by clinicians using single-electrode binaural comparisons. Binaural abilities, like sound localization and understanding speech in noise, may be improved if these across-electrode perceptual inconsistencies are removed.
Lateralization of Interaural Level Differences with Multiple Electrode Stimulation in Bilateral Cochlear-Implant Listeners.
阅读:4
作者:Stakhovskaya Olga A, Goupell Matthew J
| 期刊: | Ear Hear | 影响因子: | 0.000 |
| 时间: | 2017 | 起止号: | 2017 Jan/Feb;38(1):e22-e38 |
| doi: | 10.1097/AUD.0000000000000360 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
