Microelectromechanical systems (MEMSs) are attracting increasing interest from the scientific community for the large variety of possible applications and for the continuous request from the market to improve performances, while keeping small dimensions and reduced costs. To be able to simulate a priori and in real time the dynamic response of resonant devices is then crucial to guide the mechanical design and to support the MEMSs industry. In this work, we propose a simplified modeling procedure able to reproduce the nonlinear dynamics of MEMS resonant devices of arbitrary geometry. We validate it through the fabrication and testing of a cantilever beam resonator functioning in the nonlinear regime and we employ it to design a ring resonator working in the linear regime. Despite the uncertainties of a fabrication process available in the university facility, we demonstrate the predictability of the model and the effectiveness of the proposed design procedure. The satisfactory agreement between numerical predictions and experimental data proves indeed the proposed a priori design tool based on reduced-order numerical models and opens the way to its practical applications in the MEMS industry.
Microelectromechanical System Resonant Devices: A Guide for Design, Modeling and Testing.
阅读:6
作者:Viola Carolina, Pavesi Davide, Weng Lichen, Gobat Giorgio, Maspero Federico, Zega Valentina
| 期刊: | Micromachines | 影响因子: | 3.000 |
| 时间: | 2024 | 起止号: | 2024 Nov 30; 15(12):1461 |
| doi: | 10.3390/mi15121461 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
