The availability of electronic health record (EHR)-based phenotypes allows for genome-wide association analyses in thousands of traits and has great potential to enable identification of genetic variants associated with clinical phenotypes. We can interpret the phenome-wide association study (PheWAS) result for a single genetic variant by observing its association across a landscape of phenotypes. Because a PheWAS can test thousands of binary phenotypes, and most of them have unbalanced or often extremely unbalanced case-control ratios (1:10 or 1:600, respectively), existing methods cannot provide an accurate and scalable way to test for associations. Here, we propose a computationally fast score-test-based method that estimates the distribution of the test statistic by using the saddlepoint approximation. Our method is much (â¼100 times) faster than the state-of-the-art Firth's test. It can also adjust for covariates and control type I error rates even when the case-control ratio is extremely unbalanced. Through application to PheWAS data from the Michigan Genomics Initiative, we show that the proposed method can control type I error rates while replicating previously known association signals even for traits with a very small number of cases and a large number of controls.
A Fast and Accurate Algorithm to Test for Binary Phenotypes and Its Application to PheWAS.
阅读:4
作者:Dey Rounak, Schmidt Ellen M, Abecasis Goncalo R, Lee Seunggeun
| 期刊: | American Journal of Human Genetics | 影响因子: | 8.100 |
| 时间: | 2017 | 起止号: | 2017 Jul 6; 101(1):37-49 |
| doi: | 10.1016/j.ajhg.2017.05.014 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
