Initiation of new DNA strands by the herpes simplex virus-1 primase-helicase complex and either herpes DNA polymerase or human DNA polymerase alpha.

阅读:3
作者:Cavanaugh Nisha A, Kuchta Robert D
A key set of reactions for the initiation of new DNA strands during herpes simplex virus-1 replication consists of the primase-catalyzed synthesis of short RNA primers followed by polymerase-catalyzed DNA synthesis (i.e. primase-coupled polymerase activity). Herpes primase (UL5-UL52-UL8) synthesizes products from 2 to approximately 13 nucleotides long. However, the herpes polymerase (UL30 or UL30-UL42) only elongates those at least 8 nucleotides long. Surprisingly, coupled activity was remarkably inefficient, even considering only those primers at least 8 nucleotides long, and herpes polymerase typically elongated <2% of the primase-synthesized primers. Of those primers elongated, only 4-26% of the primers were passed directly from the primase to the polymerase (UL30-UL42) without dissociating into solution. Comparing RNA primer-templates and DNA primer-templates of identical sequence showed that herpes polymerase greatly preferred to elongate the DNA primer by 650-26,000-fold, thus accounting for the extremely low efficiency with which herpes polymerase elongated primase-synthesized primers. Curiously, one of the DNA polymerases of the host cell, polymerase alpha (p70-p180 or p49-p58-p70-p180 complex), extended herpes primase-synthesized RNA primers much more efficiently than the viral polymerase, raising the possibility that the viral polymerase may not be the only one involved in herpes DNA replication.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。