Structural and molecular mechanism for autoprocessing of MARTX toxin of Vibrio cholerae at multiple sites.

阅读:3
作者:Prochazkova Katerina, Shuvalova Ludmilla A, Minasov George, Voburka Zdenek, Anderson Wayne F, Satchell Karla J F
The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP(6)). In this study, we demonstrated that InsP(6) is not simply an allosteric cofactor, but rather binding of InsP(6) stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-A crystal structure of this InsP(6)-bound unprocessed form of CPD was determined and revealed the scissile bond Leu(3428)-Ala(3429) captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP(6), but was reactivated for high affinity binding of InsP(6) by cooperative binding of both a new substrate and InsP(6). Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。