Texture based feature extraction using symbol patterns for facial expression recognition.

阅读:4
作者:Kartheek Mukku Nisanth, Prasad Munaga V N K, Bhukya Raju
Facial expressions can convey the internal emotions of a person within a certain scenario and play a major role in the social interaction of human beings. In automatic Facial Expression Recognition (FER) systems, the method applied for feature extraction plays a major role in determining the performance of a system. In this regard, by drawing inspiration from the Swastik symbol, three texture based feature descriptors named Symbol Patterns (SP(1), SP(2) and SP(3)) have been proposed for facial feature extraction. SP(1) generates one pattern value by comparing eight pixels within a 3 × 3 neighborhood, whereas, SP(2) and SP(3) generates two pattern values each by comparing twelve and sixteen pixels within a 5 × 5 neighborhood respectively. In this work, the proposed Symbol Patterns (SP) have been evaluated with natural, fibonacci, odd, prime, squares and binary weights for determining the optimal recognition accuracy. The proposed SP methods have been tested on MUG, TFEID, CK+, KDEF, FER2013 and FERG datasets and the results from the experimental analysis demonstrated an improvement in the recognition accuracy when compared to the existing FER methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。