Conclusion
Long-term AChE activity depletion induces synaptic and cellular alterations. These data provide further insights into molecular targets and adaptive responses following the long-term reduction of AChE activity that was also targeted pharmacologically to treat neurodegenerative diseases in human subjects.
Methods
In the current study, global levels of cholinergic, cellular, synaptic, and inflammation-mediating proteins were assessed within the context of aging and chronic reduction of AChE activity. Long-term depletion of AChE activity was induced by using a mutant zebrafish line, and they were compared with the wildtype group at young and old ages.
Results
Results demonstrated that AChE activity was lower in both young and old mutants, and this decrease coincided with a reduction in ACh content. Additionally, an overall age-related reduction in AChE activity and the AChE/ACh ratio was observed, and this decline was more prominent in wildtype groups. The levels of an immature neuronal marker were upregulated in mutants, while a glial marker showed an overall reduction. Mutants had preserved levels of inhibitory and presynaptic elements with aging, whereas glutamate receptor subunit levels declined.
