Glucuronide and glucoside conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes.

阅读:7
作者:Shipkova M, Strassburg C P, Braun F, Streit F, Gröne H J, Armstrong V W, Tukey R H, Oellerich M, Wieland E
Mycophenolic acid (MPA) is primarily metabolized to a phenolic glucuronide (MPAG) as well as to two further minor metabolites: an acyl glucuronide (AcMPAG) and a phenolic glucoside (MPAG1s). This study presents investigations of the formation of these metabolites by human liver (HLM), kidney (HKM), and intestinal (HIM) microsomes, as well as by recombinant UDP-glucuronosyltransferases. HLM (n=5), HKM (n=6), HIM (n=5) and recombinant UGTs were incubated in the presence of either UDP-glucuronic acid or UDP-glucose and various concentrations of MPA. Metabolite formation was followed by h.p.l.c. All microsomes investigated formed both MPAG and AcMPAG. Whereas the efficiency of MPAG formation was greater with HKM compared to HLM, AcMPAG formation was greater with HLM than HKM. HIM showed the lowest glucuronidation efficiency and the greatest interindividual variation. The capacity for MPAGls formation was highest in HKM, while no glucoside was detected with HIM. HKM produced a second metabolite when incubated with MPA and UDP-glucose, which was labile to alkaline treatment. Mass spectrometry of this metabolite in the negative ion mode revealed a molecular ion of m/z 481 compatible with an acyl glucoside conjugate of MPA. All recombinant UGTs investigated were able to glucuronidate MPA with K:(M:) values ranging from 115.3 to 275.7 microM l(-1) and V(max) values between 29 and 106 pM min(-1) mg protein(-1). Even though the liver is the most important site of MPA glucuronidation, extrahepatic tissues particularly the kidney may play a significant role in the overall biotransformation of MPA in man. Only kidney microsomes formed a putative acyl glucoside of MPA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。