Laser Powder Bed Fusion Additive Manufacturing of a CoCrFeNiCu High-Entropy Alloy: Processability, Microstructural Insights, and (In Situ) Mechanical Behavior.

阅读:7
作者:Burgio Vito, Moeini Ghazal
High-entropy alloys are known for their promising mechanical properties, wear and corrosion resistance, which are maintained across a wide range of temperatures. In this study, a CoCrFeNiCu-based high-entropy alloy, distinguished from conventional CoCrFeNi systems by the addition of Cu, which is known to enhance toughness and wear resistance, was investigated to better understand the effects of compositional modification on processability and performance. The influence of key process parameters, specifically laser power and scan speed, on the processability of CoCrFeNiCu-based high-entropy alloys produced by laser powder bed fusion additive manufacturing was investigated, with a focus of low laser power, which is critical for minimizing defects and improving the resulting microstructure and mechanical performance. The printed sample density gradually increases with higher volumetric energy density, achieving densities exceeding 99.0%. However, at higher energy densities, the samples exhibit susceptibility to hot cracking, an issue that cannot be mitigated by adjusting the process parameters. Mechanical properties under optimized parameters were further evaluated using Charpy impact and (in situ) tensile tests. These evaluations were supplemented by in situ tensile experiments conducted within a scanning electron microscope to gain insights into the behavior of defects, such as hot cracks, during tensile testing. Despite the sensitivity to hot cracking, the samples exhibited a respectable ultimate tensile strength of 662 MPa, comparable to fine-grained steels like S500MC (070XLK). These findings underscore the potential of CoCrFeNiCu-based high-entropy alloys for advanced applications. However, they also highlight the necessity for developing strategies to ensure stable and reliable processing methods that can mitigate the susceptibility to hot cracking.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。