In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.
Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations.
阅读:15
作者:Gavilán-Arriazu E Maximiliano, Ruderman Andrés, Bederian Carlos, Moran Vieyra Eduardo, Leiva Ezequiel P M
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 20; 27(7):663 |
| doi: | 10.3390/e27070663 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
