In the present work, we address the theory of the lattice-gas model to the study of intercalation materials by using a novel kinetic Monte Carlo (kMC) algorithm for the simulation of an electrochemical method of everyday use in R&D laboratories: constant-current chrono-potentiometric measurements. The main aim of the present approach is to show how to use these atomistic simulations to study intercalation materials used as electrodes in alkali-ion batteries under galvanostatic conditions. The framework can be applied to related areas. To accomplish this, we explain the electrochemical background, linking the continuum scale with the microscopic events of discrete simulations. A comprehensive theoretical approach developed in a previous work is used as a reference for this aim. The galvanostatic kMC algorithm proposed is explained in detail and is subject to validation tests. The present work may serve as a basis for future implementations of kMC under galvanostatic conditions to study phenomena beyond the applicability of simulations on the continuum scale.
Electrochemical Modeling Applied to Intercalation Phenomena Using Lattice Kinetic Monte Carlo Simulations: Galvanostatic Simulations.
阅读:8
作者:Gavilán-Arriazu E Maximiliano, Ruderman Andrés, Bederian Carlos, Moran Vieyra Eduardo, Leiva Ezequiel P M
| 期刊: | Entropy | 影响因子: | 2.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 20; 27(7):663 |
| doi: | 10.3390/e27070663 | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
