In personalized medicine, it is often desired to determine if all patients or only a subset of them benefit from a treatment. We consider estimation in two-stage adaptive designs that in stage 1 recruit patients from the full population. In stage 2, patient recruitment is restricted to the part of the population, which, based on stage 1 data, benefits from the experimental treatment. Existing estimators, which adjust for using stage 1 data for selecting the part of the population from which stage 2 patients are recruited, as well as for the confirmatory analysis after stage 2, do not consider time to event patient outcomes. In this work, for time to event data, we have derived a new asymptotically unbiased estimator for the log hazard ratio and a new interval estimator with good coverage probabilities and probabilities that the upper bounds are below the true values. The estimators are appropriate for several selection rules that are based on a single or multiple biomarkers, which can be categorical or continuous.
Point and interval estimation in two-stage adaptive designs with time to event data and biomarker-driven subpopulation selection.
阅读:7
作者:Kimani Peter K, Todd Susan, Renfro Lindsay A, Glimm Ekkehard, Khan Josephine N, Kairalla John A, Stallard Nigel
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2020 | 起止号: | 2020 Aug 30; 39(19):2568-2586 |
| doi: | 10.1002/sim.8557 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
