Bacteriophages, which are tremendously important to the ecology and evolution of bacteria, play a key role in the development of genetic engineering. Bacteriophage virion proteins are essential materials of the infectious viral particles and in charge of several of biological functions. The correct identification of bacteriophage virion proteins is of great importance for understanding both life at the molecular level and genetic evolution. However, few computational methods are available for identifying bacteriophage virion proteins. In this paper, we proposed a new method to predict bacteriophage virion proteins using a Multinomial Naïve Bayes classification model based on discrete feature generated from the g-gap feature tree. The accuracy of the proposed model reaches 98.37% with MCC of 96.27% in 10-fold cross-validation. This result suggests that the proposed method can be a useful approach in identifying bacteriophage virion proteins from sequence information. For the convenience of experimental scientists, a web server (PhagePred) that implements the proposed predictor is available, which can be freely accessed on the Internet.
Identification of Bacteriophage Virion Proteins Using Multinomial Naïve Bayes with g-Gap Feature Tree.
阅读:4
作者:Pan Yanyuan, Gao Hui, Lin Hao, Liu Zhen, Tang Lixia, Li Songtao
| 期刊: | International Journal of Molecular Sciences | 影响因子: | 4.900 |
| 时间: | 2018 | 起止号: | 2018 Jun 15; 19(6):1779 |
| doi: | 10.3390/ijms19061779 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
