Simulations of artificial vision are used to provide the researcher an opportunity to explore different aspects of visual prosthesis device design by observing subject performance on various tasks viewed through the simulation. Such studies typically use normal, sighted subjects to measure performance at a given point in time. Relatively few studies examine performance changes longitudinally to quantitatively assess the benefits from a training plan that would be akin to post-implantation rehabilitation. Here, we had six normal, sighted subjects use a standard reading task with daily practice over eight weeks to understand the effects of an intensive training schedule on adaptation to artificial sight. Subjects read 40 MNREAD-style sentences per session, with a new set each session, that were presented at five font sizes (logMAR 1.0-1.4) and through three center-weighted phosphene patterns (2,000, 1,000, 500 phosphenes). We found that subjects improved their reading accuracy across sessions, and that the training lead to an increase of reading speed that was equivalent to a doubling of available phosphenes. Most importantly, the hardest condition, while initially illegible, supported functional reading after training. Consistent with experience-driven neuroplastic changes, gaps in the training schedule lead to transient decreases in reading speed, but, surprisingly, not reading accuracy. Our findings contribute to our larger project of developing a thalamic visual prosthesis and to post-implant rehabilitation strategies.
Improvement in reading performance through training with simulated thalamic visual prostheses.
阅读:3
作者:Rassia Katerina Eleonora K, Pezaris John S
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2018 | 起止号: | 2018 Nov 5; 8(1):16310 |
| doi: | 10.1038/s41598-018-31435-0 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
