Review of Applications of Density Functional Theory (DFT) Quantum Mechanical Calculations to Study the High-Pressure Polymorphs of Organic Crystalline Materials.

阅读:4
作者:Napiórkowska Ewa, Milcarz Katarzyna, Szeleszczuk Łukasz
Since its inception, chemistry has been predominated by the use of temperature to generate or change materials, but applications of pressure of more than a few tens of atmospheres for such purposes have been rarely observed. However, pressure is a very effective thermodynamic variable that is increasingly used to generate new materials or alter the properties of existing ones. As computational approaches designed to simulate the solid state are normally tuned using structural data at ambient pressure, applying them to high-pressure issues is a highly challenging test of their validity from a computational standpoint. However, the use of quantum chemical calculations, typically at the level of density functional theory (DFT), has repeatedly been shown to be a great tool that can be used to both predict properties that can be later confirmed by experimenters and to explain, at the molecular level, the observations of high-pressure experiments. This article's main goal is to compile, analyze, and synthesize the findings of works addressing the use of DFT in the context of molecular crystals subjected to high-pressure conditions in order to give a general overview of the possibilities offered by these state-of-the-art calculations.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。