Comparison of the Molecular Motility of Tubulin Dimeric Isoforms: Molecular Dynamics Simulations and Diffracted X-ray Tracking Study.

阅读:3
作者:Yamane Tsutomu, Nakayama Takahiro, Ekimoto Toru, Inoue Masao, Ikezaki Keigo, Sekiguchi Hiroshi, Kuramochi Masahiro, Terao Yasuo, Judai Ken, Saito Minoru, Ikeguchi Mitsunori, Sasaki Yuji C
Tubulin has been recently reported to form a large family consisting of various gene isoforms; however, the differences in the molecular features of tubulin dimers composed of a combination of these isoforms remain unknown. Therefore, we attempted to elucidate the physical differences in the molecular motility of these tubulin dimers using the method of measurable pico-meter-scale molecular motility, diffracted X-ray tracking (DXT) analysis, regarding characteristic tubulin dimers, including neuronal TUBB3 and ubiquitous TUBB5. We first conducted a DXT analysis of neuronal (TUBB3-TUBA1A) and ubiquitous (TUBB5-TUBA1B) tubulin dimers and found that the molecular motility around the vertical axis of the neuronal tubulin dimer was lower than that of the ubiquitous tubulin dimer. The results of molecular dynamics (MD) simulation suggest that the difference in motility between the neuronal and ubiquitous tubulin dimers was probably caused by a change in the major contact of Gln245 in the T7 loop of TUBB from Glu11 in TUBA to Val353 in TUBB. The present study is the first report of a novel phenomenon in which the pico-meter-scale molecular motility between neuronal and ubiquitous tubulin dimers is different.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。