Regulation of Endothelium-Reticulum-Stress-Mediated Apoptotic Cell Death by a Polymethoxylated Flavone, Nobiletin, Through the Inhibition of Nuclear Translocation of Glyceraldehyde 3-Phosphate Dehydrogenase in Retinal Müller Cells.

阅读:8
作者:Miyata Yoshiki, Matsumoto Kazuya, Kusano Shuichi, Kusakabe Yoshio, Katsura Yoshiya, Oshitari Tetsuta, Kosano Hiroshi
In the early stages of diabetic retinopathy (DR), subtle biochemical and functional alterations occur in Müller cells, which are one of the components of the blood-retinal barrier (BRB). Müller cells are the principal glia of the retina and have shown a strong involvement in the maintenance of homeostasis and the development of retinal tissue. Their functional abnormalities and eventual loss have been correlated with a decrease in the tight junctions between endothelial cells and a consequent breakdown of the BRB, leading to the development of DR. We demonstrated that the endothelium reticulum (ER) triggers Müller cell death and that nuclear accumulation of glyceraldehyde 3-phosphate dehydrogenase is closely associated with ER-induced Müller cell death. In addition, induction of ER stress in Müller cells increased vascular endothelial growth factor expression but decreased pigment-epithelium-derived factor (PEDF) expression in Müller cells. We found that nobiletin, a polymethoxylated flavone from citrus explants, exerts protective action against ER-stress-induced Müller cell death. In addition, nobiletin was found to augment PEDF expression in Müller cells, which may lead to the protection of BRB integrity. These results suggest that nobiletin can be an attractive candidate for the protection of the BRB from breakdown in DR.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。