Telomerase is a ribonucleoprotein complex that replicates the 3' ends of linear chromosomes by successive additions of telomere repeat DNA. The telomerase holoenzyme contains two essential components for catalysis, a telomerase reverse transcriptase (TERT) and telomerase RNA (TER). The TER includes a template for telomere repeat synthesis as well as other domains required for function. We report the solution structure of the wild-type minimal conserved human TER pseudoknot refined with an extensive set of RDCs, and a detailed analysis of the effect of the bulge U177 on pseudoknot structure, dynamics analyzed by RDC and 13C relaxation measurements, and base pair stability. The overall structure of PKWT is highly similar to the previously reported DeltaU177 pseudoknot (PKDU) that has a deletion of a conserved bulge U important for catalytic activity. For direct comparison to PKWT, the structure of PKDU was re-refined with a comparable set of RDCs. Both pseudoknots contain a catalytically essential triple helix at the junction of the two stems, including two stem 1-loop 2 minor groove triples, a junction loop 1-loop 2 Hoogsteen base pair, and stem 2-loop 1 major groove U.A-U Watson-Crick-Hoogsteen triples located directly above the bulge U177. However, there are significant differences in the stabilities of base pairs near the bulge and the dynamics of some nucleotides. The stability of the base pairs in stem 2 surrounding the bulge U177 is greatly decreased, with the result that the Watson-Crick pairs in the triple helix begin to unfold before the Hoogsteen pairs, which may affect telomerase assembly and activity. The bulge U is positioned in the minor groove on the face opposite the triple helical interactions, and sterically blocks the A176 2'OH, which has recently been proposed to have a role in catalysis. The bulge U may serve as a hinge providing backbone flexibility in this region.
Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA.
阅读:5
作者:Kim Nak-Kyoon, Zhang Qi, Zhou Jing, Theimer Carla A, Peterson Robert D, Feigon Juli
| 期刊: | Journal of Molecular Biology | 影响因子: | 4.500 |
| 时间: | 2008 | 起止号: | 2008 Dec 31; 384(5):1249-61 |
| doi: | 10.1016/j.jmb.2008.10.005 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
