An early requirement for nkx2.5 ensures the first and second heart field ventricular identity and cardiac function into adulthood.

阅读:3
作者:George Vanessa, Colombo Sophie, Targoff Kimara L
Temporally controlled mechanisms that define the unique features of ventricular and atrial cardiomyocyte identities are essential for the construction of a coordinated, morphologically intact heart. We have previously demonstrated an important role for nkx genes in maintaining ventricular identity, however, the specific timing of nkx2.5 function in distinct cardiomyocyte populations has yet to be elucidated. Here, we show that heat-shock induction of a novel transgenic line, Tg(hsp70l:nkx2.5-EGFP), during the initial stages of cardiomyocyte differentiation leads to rescue of chamber shape and identity in nkx2.5(-/-) embryos as chambers emerge. Intriguingly, our findings link an early role of this essential cardiac transcription factor with a later function. Moreover, these data reveal that nkx2.5 is also required in the second heart field as the heart tube forms, reflecting the temporal delay in differentiation of this population. Thus, our results support a model in which nkx genes induce downstream targets that are necessary to maintain chamber-specific identity in both early- and late-differentiating cardiomyocytes at discrete stages in cardiac morphogenesis. Furthermore, we show that overexpression of nkx2.5 during the first and second heart field development not only rescues the mutant phenotype, but also is sufficient for proper function of the adult heart. Taken together, these results shed new light on the stage-dependent mechanisms that sculpt chamber-specific cardiomyocytes and, therefore, have the potential to improve in vitro generation of ventricular cells to treat myocardial infarction and congenital heart disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。