Artificial intelligence enables precision diagnosis of cervical cytology grades and cervical cancer.

阅读:10
作者:Wang Jue, Yu Yunfang, Tan Yujie, Wan Huan, Zheng Nafen, He Zifan, Mao Luhui, Ren Wei, Chen Kai, Lin Zhen, He Gui, Chen Yongjian, Chen Ruichao, Xu Hui, Liu Kai, Yao Qinyue, Fu Sha, Song Yang, Chen Qingyu, Zuo Lina, Wei Liya, Wang Jin, Ouyang Nengtai, Yao Herui
Cervical cancer is a significant global health issue, its prevalence and prognosis highlighting the importance of early screening for effective prevention. This research aimed to create and validate an artificial intelligence cervical cancer screening (AICCS) system for grading cervical cytology. The AICCS system was trained and validated using various datasets, including retrospective, prospective, and randomized observational trial data, involving a total of 16,056 participants. It utilized two artificial intelligence (AI) models: one for detecting cells at the patch-level and another for classifying whole-slide image (WSIs). The AICCS consistently showed high accuracy in predicting cytology grades across different datasets. In the prospective assessment, it achieved an area under curve (AUC) of 0.947, a sensitivity of 0.946, a specificity of 0.890, and an accuracy of 0.892. Remarkably, the randomized observational trial revealed that the AICCS-assisted cytopathologists had a significantly higher AUC, specificity, and accuracy than cytopathologists alone, with a notable 13.3% enhancement in sensitivity. Thus, AICCS holds promise as an additional tool for accurate and efficient cervical cancer screening.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。